Quantifying the Detection of Directly Perceived Flicker

Andrew Bierman

Lighting Research Center, Rensselaer Polytechnic Institute

ENERGY STAR® Lighting Webinar Series February 25, 2016

What is flicker?

- Rapid fluctuation of light output over time
 - Unintentional result from operating on 50/60 Hz line power
 - Can be intentional to control light output
 - For example, pulse width modulation (PWM)

Different reasons to be concerned about flicker

Health

- > Seizures
- > Headaches, stress, general malaise

Safety

- > Identifying moving machinery
- > Location confusion (phantom arrays)

Productivity

> Visual task performance (e.g. legibility)

Perception

- > Comfort/annoyance
- Lighting Quality

This presentation concerns the human perception of flickering light. Perception is not necessarily related to health, safety and productivity.

For example

- Fluorescent lamp flicker at 100 Hz is not perceptible, yet it is implicated in causing headaches
- Flickering candlelight is generally regarded as safe, but it is obviously perceptible.

Two flicker regimes

- Flicker can be perceived in two ways:
 - > Direct perception of light fluctuation
 - Frequencies < 100 Hz
 - No motion involved
 - Indirect perception of stroboscopic effects (phantom array, wagon-wheel effect)
 - Typically frequencies > 100 Hz
 - Relies on movement of the eye or stimulus
- This presentation is about directly perceived flicker

Measuring the light waveform

 The first step in characterizing flicker perception is accurately capturing the light waveform

Measuring Direct Flicker

- The goal of this study was to develop a method and test procedure for quantifying detection of direct flicker.
- Characteristics of flicker that influence perception include:
 - > Frequency
 - Waveform shape (including: modulation depth, duty cycle, rise/fall time, etc.)

Included as variables in this study

Typical office/home conditions employed

- Light level
- Stimulus size (visual solid angle) and retinal image location (central fovea vs periphery)
- Spectral composition (color); for white light sources there might be a slight influence that is not accounted for by photopic weighting

Approach

- 1) Express the light waveform as a series of sinusoidal components of different frequencies (Fourier series)
- Determine the perceptual strength of each sine wave in the series
- 3) Combine the individual perceptual strengths to determine the overall effect.

Step 1 Waveform components

Step 2

Determine the sensitivity to sinusoidal modulation as a function of frequency. Modulation threshold is the modulation (% flicker) needed for a 50% flicker observation rate.

LRC study results for the sensitivity to sinusoidal flicker Lighting Research Center

Step 3

 The combined perceptual effect of different frequency components appears to follow rules of Euclidean vector addition (Euclidean distance).

$$Result = \sqrt[n]{\sum_{k} (M_{P_k})^n}$$
 Component 1 (e.g. 20 Hz)

n=2

Other ways of combining:

"Manhattan taxicab" distance (n = 1)

Arithmetic addition shown by this and other studies as wrong.

"Chess board" or Chebyshev distance $(n = \infty)$ Result = longest vector. Appears in earlier literature (De Lange, 1961).

Perz et al. (2015) found optimal fit to their data with n = 3.7, but not much different than n = 2.

Component 2 (e.g. 40 Hz)

Experiment verifying Euclidean distance combination

Waveform	Modulation Percent by Component to				Metric value
(sinusoids)	Reach flicker Detection Threshold*				(± 1 σ)
	10 Hz	15 Hz	20 Hz	25 Hz	
15Hz + 20 Hz		0.30	0.41 ± 0.03		0.97 ± 0.05
15Hz + 20 Hz		0.49	0.14 ± 0.05		0.94 ± 0.03
20Hz + 25 Hz			0.38 ± 0.09	0.24	0.84 ± 0.18
20Hz + 25 Hz			0.34 ± 0.06	0.36	0.87 ± 0.10
10Hz + 15 Hz	0.12	$0.57 \pm .04$			1.09 ± 0.07
10Hz + 15 Hz	0.30	$0.44 \pm .14$			0.95 ± 0.24
10Hz + 15 Hz	0.48	$0.35 \pm .05$			0.95 ± 0.06
15Hz + 25 Hz		0.30		0.39 ±0.07	0.84 ± 0.10
10Hz + 25 Hz	0.24			0.57 ±0.05	1.01 ± 0.08
10 Hz + 15Hz + 25 Hz	0.18	0.18		0.54 ±0.05	0.98 ± 0.07

 $^{^*}$ \pm values indicate components that were adjusted by subject, the other components were fixed.

Research Center

Proposed ASSIST Flicker Metric (Direct Flicker)

- Collect light waveform
 - > Xn = sampled waveform, Sampling frequency > 1000 Hz, 0.1% amplitude resolution
- Fourier transform

$$X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{i2\pi kn}{N}}, A_k = \frac{\sqrt{Re(X_k)^2 + Im(X_k)^2}}{N}, k = 1, 2, 3, \dots$$

Divide by dc (Weber contrast)

$$M_k = \frac{A_k}{A_0}$$

 Weight by human threshold sensitivity

$$M_{P_k} = \frac{M_k}{M_{DTH_k}}$$

Sum independent frequency components

$$M_{P} = \sqrt{\sum_{k} (M_{P_{k}})^{2}}$$

$$k = 1, 2, 3, ...$$

ASSIST Flicker Metric

Testing the Proposed Metric

- The observed rate of flicker detection matched (within experimental uncertainty) with the metric value for all waveforms tested
 - Over 200 different waveforms tested (square, rectangular, sine waves)
 - > (Also tested actual LED A lamps at full power and dimmed)

Interpreting metric values (M_P)

- A value of 1 is just-perceptible flicker
 - > 50% observation rate

Example waveform #1

Example waveform #2

Example waveform #3

This is very **obvious flicker**: 5% duty cycle at 10 Hz 47% flicker, Flicker Index = 0.075, ASSIST Flicker Metric = 35.4

This flicker is undetectable: 5% duty cycle at 10 Hz 76% flicker, Flicker Index = 0.073, ASSIST Flicker Metric = 0.3

Low frequency (f<70 Hz) removed

(keeping the dc component)

Visible flicker

0.075

Percent Flicker →

Flicker Index

0.073

No Visible flicker

35

ASSIST Metric

0.3

76

Thank You!

 For more information visit http://www.lrc.rpi.edu/programs/solidstate/assist/flicker.asp

